
XUA

A PHP CODE GENERATOR

WINTER 1399

KAMYAR MIRZAVAZIRI

TABLE OF CONTENTS

Preface

Units

Interfaces & Routes

Supers

Predefined Supers

Entities

Methods

VARQUE Methods

Services

Predefined Services

Documentations

Congratulations

check_circle

check_circle

check_circle

check_circle

check_circle

file:///var/www/xuarizmi/docs/Preface.html
file:///var/www/xuarizmi/docs/Units.html
file:///var/www/xuarizmi/docs/InterfacesRoutes.html
file:///var/www/xuarizmi/docs/Supers.html
file:///var/www/xuarizmi/docs/PredefinedSupers.html
file:///var/www/xuarizmi/docs/Entities.html
file:///var/www/xuarizmi/docs/Methods.html
file:///var/www/xuarizmi/docs/VarqueMethods.html
file:///var/www/xuarizmi/docs/Services.html
file:///var/www/xuarizmi/docs/PredefinedServices.html
file:///var/www/xuarizmi/docs/Documentations.html
file:///var/www/xuarizmi/docs/Congratulations.html

PREFACE;

AN INTRODUCTION TO XUA

Introduction

Xua is shortened form of Xuarizmi, named after al-Khwarizmi (Persian: ,(خوارزمی�����خوارز a Persian

mathematician, astronomer, geographer, founder of algebra (The term algebra itself comes from

the title of his book "al-jabr" meaning completion or rejoining), and head of the library of the House

of Wisdom in Baghdad. His name was formerly Latinized as Algoritmi (and yes, that's where the

word algorithm comes from).

Xua is a Code Generator Tool, mainly applicable for creating Web-Services and, in some cases, for

creating complete Web-Sites (including back-end and front-end). Xua aims to generate all trivial

and technical codes for us, so we only write codes that require human intelligence. In other words,

the only thing that Xua does not do is its name. We need to give it algorithms, and Xua does the

rest by itself.

Xua generates server codes in PHP language. While a full and complete PHP Project can be

generated by Xua, it is not possible to get a complete front-end project; instead, Xua can generate

a front-end library (Marshal Library) that can make the connection between client and Xua server

faster, more secure, more reliable, and easier to implement.

Architecture

Generally, most multi-user applications (such as social networks, messengers, online games,

websites) have the following architecture (except for those which are peer-to-peer or using chains

and other similar concepts).

This architecture is called client-server. The shared data is stored in a central core (usually called

the server), and users (usually called clients) can read, modify, and delete specific data based on

their permissions. From Xua's perspective, we can think of the connection between the data

https://w.wiki/47BH
https://en.wikipedia.org/wiki/PHP

storage and each user as a series of interfaces, each one communicating with the next and

previous interfaces on a specific platform.

According to this principle, both back-end and front-end applications are nothing more than

interfaces between the actual user and the data storage.

The Triplet of Xua is three blocks: Method, Entity, and Super.The Method blocks are the ones that

handle communication with the front-end application, and the Entity blocks are the ones that

handle communication with the Database. Super blocks (actually Super-Type blocks) are one level

lower than Method and Entity blocks; Supers are not explicitly used in communications but instead

are used in defining Methods and Entities and are a fundamental part of Xua as they do all of the

type-checkings, validation, and marshaling and unmarshaling the data.

There is also a fourth block called Interface, which is in the frontline of the back-end application.

There is a specific interface called URPI (Universal Resource Pool Interface) responsible for

connecting its requests to Methods, but the programmer can define other interfaces as well and fill

them with pure PHP codes. There is also a file called routes.xrml (xrml stands for Xua's routes

minimal language) which defines that what Interface should be called based on the request

method (such as POST , GET , OPTIONS) and the request URI, which are HTTP protocol concepts (which

is the protocol Xua and front-end communicate with).

Xua advocates the single block policy. A .xua file can contain one block at most, and the block can

be Method, Entity, Super, or Interface. However, having more than one block in a file is permitted

only for documentation purposes, and it should not affect the server project. So there are only four

types of .xua files. One can also inject native scripts under the name of Services and assets and

other files (under the name of Resource Files) into the project.

So a Xua project is a combination of specifications (Methods, Entities, Supers, Interfaces,

Services, and Resource Files to be specific) that will result in generating a server project (known

as Xua Server), a front-end library (known as Marshal Library), and a complete set of

documentations (known as Documentations).

The detailed Xua architecture is a little frustrating compared to the simplified version we have just

provided, but we only mention it here. There is no need to master it entirely for now.

The blue units are the ones mentioned above, and the programmer needs to specify them directly.

The RDU is generated based on the file routes.xrml , and MUU is generated based on Super blocks.

So a Xua project is simply a set of files specifying this stuff. All these lead us to the following

structure of a Xua project.

Xua Project Root

├─ Methods

│ └─ (.xua files)

├─ Entities

│ └─ (.xua files)

├─ Supers

│ └─ (.xua files)

├─ Interfaces

│ └─ (.xua files including HomeInterface.xua, TestInterface.xua,

│ and UniversalResourcePoolInterface.xua)

├─ Services

│ ├─ Server

│ │ ├─ PHP

│ │ └─ └─ (.php files)

│ ├─ Marshal

│ │ ├─ JavaScript

│ │ └─ └─ (.js files)

│ └─ (...)

├─ (Resource Files ...)

├─ routes.xrml

└─ config.xml

But this is the default structure; the programmer can change it by modifying config.xml .

In this documentation, we try to cover all of these units. By visiting the page Architecture and

clicking on a unit, you will be redirected to the documentation section of that unit. Note that the

Units documentation mainly contains information about why a unit exists and what it does in a

more theoretical way. For details on how (instead of why) to create a Xua block (syntax), read the

corresponding chapter.

Practicalities

System Requirements

 Currently, Xua is only available on Linux.

- python3 along with pip are required to install xua package.

- The PHP Engine and a PHP Server is recommended for test and debug on the local server.

- MySQL Server is recommended for test and debug on the local server.

- DataGrip is recommended for monitoring data to test and debug.

- Visual Studio Code is recommended with Xua extension installed to code in Xua language.

Although it is unnecessary, the extension will help with code correction and autocomplete and

make the build processes easier.

Getting Started

Installation

Installing the VSCode Xua extension will automatically install requirements and the Xua CLI tool.

Still, if you're not willing to use VSCode, you can install xua using pip from that.

- Install pip

sudo apt install python3-pip

- Add pip packages directory to PATH

if [[":$PATH:" != *":/home/ubuntu/.local/bin:"*]]; then PATH="/home/ubuntu/.local/bin${PATH:+":$PATH"}"; fi

- Install xua

pip install -e git+https://github.com/kmirzavaziri/xua-cli/#egg=xua

file:///var/www/xuarizmi/docs/Architecture.html

You can check the xua is installed correctly by running the command

xua --version

it should output something like this

 Xua: A PHP Code Generator

 ██╗░░██╗██╗░░░██╗░█████╗░

 ╚██╗██╔╝██║░░░██║██╔══██╗

 ░╚███╔╝░██║░░░██║███████║

 ░██╔██╗░██║░░░██║██╔══██║

 ██╔╝╚██╗╚██████╔╝██║░░██║

 ╚═╝░░╚═╝░╚═════╝░╚═╝░░╚═╝

 1.0-β

Hello World!

 To create a new project, go to a directory you want to create the project and run

xua new project PROJECT_NAME

Now go to the project directory and build the template project you just created by running

cd PROJECT_NAME

xua build server/ph

or alternatively, click on the build button that appears in VSCode after installing the plugin.

Set up a PHP server on the build destination location (build/php/ by default)

cd build/php

php -S localhost:8000 main.php

or alternatively, click on the run server button that appears in VSCode after installing the plugin.

Now, you should be able to see the Hello World! page by visiting the localhost:8000 page on your

browser.

This page has been generated by xua

http://localhost:8000/
http://xuarizmi.ir/

UNITS;

THE FUNDAMENTALS

Introduction

 In this chapter, we try to focus on concepts and theories. Reading this chapter helps with

understanding the concepts and fundamentals, but turning these theories into practice, needs

reading the main chapter of the unit. Only a few units are directly defined by the programmer

(namely: Methods, Entities, Supers, Interfaces, Services, Resource Files), and there is a special

chapter for each, which you can reach by clicking on them.

Xua Server

 Xua generates three projects. Xua Server, Marshal Library, and Documentations. Among these

projects, the server is the most important one, which contains all the units that serve logic to the

whole project. The role of the server is to be an interface between the front-end application and the

database. The server is responsible for reading and modifying the database based on the requests

it receives.

Xua Server Directly Defined Units

 There are some units in the server project that need a direct definition from the programmer.

These units are shown in blue on the architecture page.

Universal Resources Pool

 A Xua Server contains a pool of resources that are available for use. These resources can be

available universally, i.e., foreign parties can use resources, and internally, i.e., available for

internal resources and units. The idea is similar to a class's private and public visibility, but a public

class is only accessible from other codes on the same project, while a universal resource is

accessible from other projects, even on other machines other than where the server project is

stored. Xua resources are divided to Methods, Entities, Supers, Services, and Public Resource Files.

 (main chapter)

Methods are the central part of a Xua Project. A method is a minimal unit that does a particular job

when called. One can think of methods as just functions, but there are two differences. A method

can be called from outside of the project and can return multiple values.

Methods are simply triplets $M = (Q, R, B)$. The first member, Request , shown by Q, defines the

structure of request that needs to be prepared and given to the method, and the second one,

Response , shown by R, defines the structure of response that the method returns. The third

member, Body , shown by B, is a script executed when the method is called.

Methods

file:///var/www/xuarizmi/docs/Methods.html
file:///var/www/xuarizmi/docs/Entities.html
file:///var/www/xuarizmi/docs/Supers.html
file:///var/www/xuarizmi/docs/Interfaces.html
file:///var/www/xuarizmi/docs/Services.html
file:///var/www/xuarizmi/docs/ResourceFiles.html
file:///var/www/xuarizmi/docs/Methods.html

Xua will generate a PHP class indirectly extending a Xua abstract class called MethodEve for each

Entity Block the programmer creates. One can call these Method classes using their constructor.

For example

$response = new SomeMethod($request);

is a PHP script that calls $SomeMethod with request $request provided and stores the result in

$response .

 (main chapter)

A Xua project can communicate with a database server (usually MySQL), but the programmer must

specify the database structure. To do so, Xua offers Entity Blocks. Xua will generate a PHP class

extending a Xua abstract class called Entity for each Entity Block the programmer creates. These

Entity classes are in a one-to-one correspondence with database tables. Each row of the table then

can be corresponded by an instance of the table’s corresponding class.

To define an Entity, the programmer needs to define a list called Fields containing Entity columns

with their types. Setting the Fields is mandatory, but there are some optional members an Entity

may have.

One member is a list called Indexes , which defines the database indexes, that would make select

queries faster or force unique values (Read more about database indexes by googling).

Another is a boolean function (predicate) called Validation , which checks if an Entity instance (a

row) is valid according to business logic (part of the program that encodes the real-world business

rules that determine how data can be created, stored, and changed). For example, assume we

have two fields, country and city in the Entity User . The Validation function is responsible for

checking if the city is inside the country and avoid invalid or inconsistent data.

Therefore, an Entity is theoretically a triplet $E = (F, I, V)$. Although one can override database

communication methods (functions responsible for reading or modifying data), that is a technical

detail, and we do not cover it in this section.

 (main chapter)

Super Types or simply Supers are parametric types.

Let us talk about types first. One can think of a type as a set, for example the type Integer is

actually the set $\mathbb{Z} = \{0, 1, -1, 2, -2, \dots \}$ and when we say that 42 is of type

Integer , this means that $42 \in \mathbb{Z}$, which is written $42 : \mathbb{Z}$ in Xua's syntax.

We know that there is a one-to-one correspondence between sets and predicates. Having a

predicate P, we can define the corresponding set to be $S = \{ x | P(x) \}$, and having a set S,

we can define the corresponding predicate to be $P(x) := x \in S$. Since implementing predicates

as boolean functions is more practical in computers, we use predicates to define types.

Entities

Super Types

file:///var/www/xuarizmi/docs/Entities.html
file:///var/www/xuarizmi/docs/Supers.html

However, there are some features that types usually have that sets do not. In Xua's definition of

type, a type is a set equipped with three functions NativeType , Marshal , and Unmarshal . We express a

type by the 4-tuple (P, Y, M, U), where P is the characteristic function of the type's set. These

functions make a type dependent on the target language. For example, if we are willing to use the

integer type in Java language, we need to write these functions in Java language.

Note that predicate can only be defined in the PHP language. But others are stack-based, meaning

that they can be written in any of Xua's supported languages and also for the database.

The Native Type function must return a string literal declaring the value type in the native

language's syntax. For example, if the type accepts date-times and null value, it must return ?

DateTime for PHP language and DATETIME NULL for MySQL.

Note. The database functions are written on PHP syntax, for example, for the MySQL Native Type

one can write

Type<Database>{

 return "DATETIME NULL";

}

The Marshal and Unmarshal functions are responsible for preparing the values for transmitting or

storing. To store a value in the database and read from it, one must write marshaling functions with

the database as the target, and for transmitting over the HTTP, PHP and front-end languages are

used as the target.

As an example (that is not quite practical and efficient), let T be the type of integers defined for

the MySQL stack. We know $P(42)$ is true; therefore, we can say $42 : T$. It seems that M must

be U^{-1}, but it is not a necessity. Let us say that M takes an integer and returns its binary

representation. Therefore $M(42) = '101010'$. The U must be the opposite, so $U('101010') =

42$, but what is $U('42')$, the decimal representation in a string. Can we say this is undefined and

the domain of U only accepts binary strings? It is up to the programmer that $U = M^{-1}$ or

not, so the programmer needs to define both M and U functions separately. Finally, we can say

T must return the string VARCHAR(100) . Because the result of our marshal function is a string, and

Xua uses that to store data in the database.

Now, what is a Super Type? A Super Type is a function that takes some parameters and returns a

type (Actually returns a list of types for different stacks). A Super Type is an object a whole level

above a type. Each Super Type eventually results in a PHP class extending a Xua abstract class

called Super . Each instance of this class is a type (possible to use different stacks on it), and the

class constructor is the function that takes some parameters and creates a type. The parameters

are then accessible as attributes. For example, take a look at Enum that takes one parameter called

values .

$genderType = new Enum([

 'values' => ['male', 'female']

]);

The parameter values is set to array ['male', 'female'] and the variable $genderType is now a type

that has the 4 discussed members.

P, the first member, is called accepts .

var_dump($genderType->accepts('male')); \\ dumps true

Since $\mathsf{male} \in \{\mathsf{male}, \mathsf{female}\}$.

Now note that for the stack-based functions, the server project includes only two stacks, database,

and PHP. Functions for other stacks are included in the corresponding Marshal Libraries.

So there must be two Y's, in the PHP generated class. The database-targeted function is called

databaseType , and the PHP-targeted function is called phpType .

var_dump($genderType->databaseType()); \\ dumps 'INT'

var_dump($genderType->phpType()); \\ dumps 'int'

Similar to Native Type, there are two Ms marshal and marshalDatabase , but for simplicity assume

they obey the same algorithm, which is returning the index of the element in array values .

var_dump($genderType->marshal('male')); \\ dumps 0

var_dump($genderType->marshal('female')); \\ dumps 1

At last, U functions unmarshal and unmarshalDatabase .

var_dump($genderType->unmarshal(1)); \\ dumps 'female'

Note. The marshal and unmarshal functions of Xua's official Enum are both the identity function;

this is just an example.

There is also another member of a type that returns the parameters given to it when constructed.

$genderType->parameters();

Will return the following map.

[

 'value' => ['male', 'female']

]

A Little Formalism on Super Types

 The set of boolean values, i.e., $\{\mathsf{0}, \mathsf{1}\}$ is shown by \mathbb{B}.

The set of all single-argument predicates is shown by \mathbb{P}, all Native Type functions by $

\mathbb{Y}$, all marshal functions by \mathbb{M}, and all unmarshal functions by $

\mathbb{U}$.

The set of all types (the so-called 4-tuples) is shown by \mathbb{T}.

A simple observation is that $\mathbb{T} = \mathbb{P} \times \mathbb{Y} \times \mathbb{M}

\times \mathbb{U}$.

A Literal Name is a literal string containing only alphanumeric characters, starting with a lowercase

character. The set of all Literal Names is shown by \mathbb{L}.

The set of all values possible to store in a variable is shown by \mathbb{X}.

A Dictionary is a partial function $D: \mathbb{L} \to \mathbb{X}$ and is usually expressed by all

of its records. The set of all dictionaries is shown by \mathbb{D}.

For example, Let D be a dictionary with domain $\{\mathsf{name}, \mathsf{gender}\}$,

$D(\mathsf{name}) = \mathsf{Kamyar}$, and $D(\mathsf{gender}) = \mathsf{male}$. We can

express D as {name: 'Kamyar', gender: 'male'} .

The set of all stacks (PHP, Database, Dart, JS, Java, etc.) is shown by \mathbb{K}.

So we can formally say that a Super is a function $S: \mathbb{K} \times \mathbb{D} \to

\mathbb{T}$.

But we technically define a super to be the 5-tuple $\mathfrak{S} =(\mathfrak{P}, \mathfrak{Y},

\mathfrak{M}, \mathfrak{U}, \mathfrak{V})$, where $\mathfrak{P}: \mathbb{D} \to \mathbb{P}

$, $ \mathfrak{Y}: \mathbb{K} \times \mathbb{D} \to \mathbb{Y}$, $ \mathfrak{M}: \mathbb{K}

\times \mathbb{D} \to \mathbb{M}$, $ \mathfrak{U}: \mathbb{K} \times \mathbb{D} \to

\mathbb{U}$, and finally $ \mathfrak{V}: \mathbb{D} \to \mathbb{B}$ (We discuss the $

\mathfrak{V}$ later). The correspondence is the following. \begin{eqnarray*} \begin{cases} S(K,

D) = (\mathfrak{P}(D), \mathfrak{Y}(K, D), \mathfrak{M}(K, D), \mathfrak{U}(K, D)) &

\mathfrak{V}(D) \\ S(K, D) \textit{ raises error} & \neg \mathfrak{V}(D) \end{cases}

\end{eqnarray*}

As one can see above, the Validation part of a Super \mathfrak{V} is responsible for validating

the given arguments.

 (main chapter)

some data-types are more than an entity or a Super. Some classes like DateTime are neither in an

equivalence relation with a database table nor possible to implement with Xua's Super, since the

programmer may need methods such as addDays , format , or toJalali from this data-type.

Also, some procedures need to be implemented somewhere other than Methods, Supers, or

Entities. For example, adding a watermark to an image or building a PDF.

Xua satisfies this need by letting programmers write their native PHP scripts. Although the codes

must be written inside classes, the programmer is pretty much free to do everything inside the

classes. The Xua engine will copy these native codes to the resulting project as they are.

Server Service Classes

file:///var/www/xuarizmi/docs/Services.html#Server

Resource Files

 In almost any project, there exist some files that are not native scripts; these files can be anything,

assets, user-uploaded files, documents, etc. In Xua's terminology, we call any non-executable file a

resource file. The resource files exist directly in the resulting project directory, and the programmer

must mark the directories that contain resource files as resource directory in config.json . Read

Configurations Chapter to see how to do this.

 Resource files can be public, i.e., accessible by just going to the file's address. For example, when

a user opens a web page in the browser, there are some assets, e.g., styles, fonts, images, etc.,

that browser fetches from the server. These files must be marked as public.

 In many projects, some files are needed to be on the server but are not public files. For example,

think of an online book store. There are many .pdf files on the server which the server sends them

via email or shows them on the web only if the user is authorized and paid for them. These files

must be marked as private.

Interfaces

 (main chapter)

interfaces are the frontline of the project, immediately executed when a user requests on the

interface's defined route. We usually avoid writing codes that include business logic; instead, we

call a resource responsible for the route. Since we have a specific route called URPI that handles all

the direct requests for resources, writing a new interface is only helpful in rendering a website, i.e.,

we define routes for pages the user visits, and ask a resource (a Method resource) to create an

HTML page, and show the page created to the user.

Xua Server Generated Units

 some units exist in the server project that are entirely generated by the Xua engine, and there is

no need for a programmer to modify them, but it helps if the programmer knows how they work,

and in some cases, the programmer may modify them in a way that is more suitable for the

project.

Universal Resources Pool Interface (URPI)

 Accessing resources on the same project is as easy as before; one unit can call a resource

internally, and there is no complexity. Although accessing a resource from other machines needs a

protocol, the client needs to marshal the request in a data-type that is available for transmitting on

the network, then we need to unmarshal the request in a way that is meaningful for Universal

Resource Pool, this is done by a predefined interface called URPI. The client tells URPI what

resource is needed, URPI calls the resource, prepares the result for network transmitting, and sends

the result back to the client, where the result can be unmarshalled and used.

Note. The URPI is an Interface existing in the interfaces directory of the template project. The URPI

is a Xua source file, meaning it is not generated when building the project; it has been generated

Public Resource Files

Private Resource Files

file:///var/www/xuarizmi/docs/Configurations.html
file:///var/www/xuarizmi/docs/Interfaces.html

only once when making a new project from Xua's default template. Therefore this unit is modifiable

and even removable.

Route Detection Unit

 The programmer can map URIs on the website to interfaces using a file called routes.xrml (Xua's

routes minimal language). This way, when a user or client sends a request to the server, it is the

job of RDU to detect which route matches the requested URI and method (such as POST, GET,

OPTIONS, etc.). After the route is detected, Xua will call the corresponding interface, and then the

script inside that interface returns the desired response.

There is also a predefined service called RouteService , which has a function that does the inverse of

this mapping and helps find the URI of an interface.

Xua Exception Handler

 After the interface returns the response, it is not prepared to show to the user yet. Immediately

after interface code execution, the result goes to the XEH, any uncaught exception, fatal error,

warning, etc. get caught here, and a default error page is shown to the user in order to avoid inside

script or data leaks, as well as making the website more user friendly.

It is possible to modify how Xua catches exceptions by modifying a predefined service called

ExceptionService . For example, one may want to make it possible for developers to see the exact

error while users must see a simple error page. Alternatively, one may want to show an error

message in JSON instead of showing an HTML page. In these cases or other similar cases, One can

modify ExceptionService and check if the request is sent by a developer, for example, by checking a

special header. Read ExceptionService for more practical information.

Marshal Library

The Marshal Library is a client library that can be built in several front-end languages. The library

helps the front-end developers to access resources from the Universal Resources Pool. For example,

if there is a method in the pool called Method\Media\GetOne , the front-end developer can call it using

the following code in Dart.

result = Marshal.Method.Media.GetOne(mediaId);

The Marshal library sends a request to the server saying the method Method\Post\Get needs to be

executed with given marshaled parameters. The URPI then unmarshals the given parameters, calls

the method, receives the response, marshals it, and sends it back to the client. The Marshal library

fetches it, unmarshals it, and returns the structured response, which then will be used in the front-

end project.

Virtual Resource Pool

 The Virtual Resource Pool is a set of methods and entities, twins of the ones in the server,

containing only a server call and nothing more.

file:///var/www/xuarizmi/docs/PredefinedServices.html#ExceptionService

Entity Interfaces

 For each entity on the server project, a twin entity exists inside VRP but with hollow methods. Each

method only contains an HTTP request that tells the server to execute its twin; the result is fetched

from the server and is returned.

Method Interfaces

 For each method on the server project, a twin method exists inside VRP but with a hollow body.

The body only contains an HTTP request that tells the server to execute its twin; the result is

fetched from the server and is returned.

Local Service Classes

 (main chapter)

Server Service Classes discussed above are classes that programmers may use to instantiate

objects. These objects can be used in universal resources. For example, a method may return an

instance of a service class. Xua marshals the result and sends it to the Marshal Library where it

should be unmarshalled. But how are we going to represent the object there? Assume we have a

method called getNow , and the method responses the variable now , an instance of DateTimeService .

Then in the JS project, we want to get the Jalali representation of the DateTimeService using the

method formatJalali on DateTimeService . This is not something we ask the server to do for us. We

should be able to execute the method on the client side. Therefore, if we want to use some

methods of some service classes on the client side, we should rewrite the class in the native

language of the client side. The programmer can write native codes for the client, and the codes

are copied to the Marshal Library when building.

Marshal Library Generated Units

 Just as the server project, some units exist in the Marshal library that are entirely generated by the

Xua engine, and there is no need for a programmer to modify them, but it helps if the programmer

knows how they work, and in some cases, the programmer may modify them in a way that is more

suitable for the project.

Marshal/Unmarshal Unit

 This is the unit that the library derived its name from. This unit is responsible for marshaling

request data and unmarshaling the response. The unit is affected by supers definitions but is not

directly programmable.

Http Connection Unit

 This is a rather technical unit that sends requests to the server and fetches responses. This unit

can also modify requests and responses, for example, adding a user token, API key, etc., to the

request. This unit is possible to modify. The programmer must modify a predefined service called

HttpConnectionService . Read HttpConnectionService for more practical information.

file:///var/www/xuarizmi/docs/Services.html
file:///var/www/xuarizmi/docs/PredefinedServices.html#HttpConnectionService

Documentations

 (main chapter)

Xua is capable of generating a set of documentations for the project. Currently, the

documentations are available in HTML and LaTeX formats. Xua engine uses comments inside

project source files to generate the doc. The current documentation you are reading is generated

by Xua, and all these texts are just comments inside source files.

The documentations are file-to-file, meaning that for each source file, there exists a .html or .tex

file and vice versa.

Service Classes Documentations

 Service classes are the files labeled as services in config.json , and are only project source files

without the .xua extension. For each of these files, the Xua engine generates a documentation file

consisting of the comments.

Super Types Documentations

 Other than including the comments in the documentation, Xua can automatically generate a table

of super parameters, with their types, default values, and description. The description of a

parameter is the comment that comes immediately after the parameter definition; if no comment

is found, the description is set to - . Xua can also sectionize different parts of a super, like

validation, marshal, unmarshal, etc., and shows comments of each one in the related section.

There are also some other minor automated functions that Xua can perform.

Entities Documentations

 Other than including the comments in the documentation, Xua can automatically generate a table

of entity fields, with their types, default values, description, etc. The field description is the

comment that comes immediately after the field definition; if no comment is found, the description

is set to - . Xua can also sectionize different parts of an entity, and some other automated

functions are also present.

Entities Graph

 Almost any project has some related entities; for example, we may have an entity called User that

has a field called birthPlace that comes from another Entity called AdministrativeDivision , and an

entity called Restaurant that has a field called costumers which comes from User , and a field called

city that comes from City . There would be many other entities with relations; these relations can

be one-to-one, one-to-many, many-to-many, or many-to-one. Most of these complicated projects

have a graph of entities as vertices, showing the relations by edges. Xua is capable of drawing this

graph and modify it whenever an entity is modified.

Methods Documentations

 Other than including the comments in the documentation, Xua can automatically generate a table

of the request parameters, and a table of the response parameters, with their types, default

values, description, etc. The description of a field is the comment that comes immediately after the

file:///var/www/xuarizmi/docs/Documentations.html

parameter definition; if no comment is found, the description is set to - . Xua can also sectionize

different parts of a method, and some other automated functions are also present.

Book

 Book is the name we call a .xua file, or a set of .xua files when the file(s) do(es) not affect the

Server project or the Marshal library, just like the one you are reading currently.

Foreign Units

 Some units are out of our control, they work as they are, but they are our concern since we want

to communicate with them.

System Resources

 System resources are usually procedures and scripts not written in PHP, such as cronjobs, shell

commands, Redis queues, foreign language codes, etc. However, we may want to use these

resources in our project. This use can be done through a service.

For example, assume we have a coding contest website and want to compile and run some tests

on uploaded codes. We may have a foreign judge project written in Python that does this for us; we

only need to call it. We can write a service called JudgeService and use it in a method. Or if we want

to manage a queue, we can write a service called QueuesService and call it like the following.

QueuesService::addToQueue(QueuesService::QUEUE_WAITING_TO_JUDGE_CODES, $uploadedCode)

Libraries

 There can be some PHP libraries that we do not wish to rewrite, for example, generating a QR

Code, reading an excel file, etc. We can have these codes available and write a service to call these

for us. It is essential to mark libraries as resource files in config.json , or they will be deleted when

cleaning the project.

3rd Party Apps

 Same as System Resources, and Libraries, we can write services and interfaces to communicate

with 3rd Party Apps. For example assume we want to use redis which is a 3rd party tool, we can

write a service that does the low-level communications and offers a set of high-level methods to

the Xua project.

Database and Cache Servers

 The main feature of any server project is communicating with a database server; Entities are

configured to do so. However, it is also possible to configure entities to connect to a cache server

instead. The cache server then communicates with the database if the data is not available.

Web Browser

 The web browser is the interface that the user communicates with; if the project is not just a web-

service, and contains a website, then the web browser is the application that communicates with

the server project, which may ask for different URLs on the server that routes and interfaces will

handle.

Native Client Codes

 Client Codes are the codes written by front-end developers that are the user interface of the

project. These codes may not communicate with the server directly; instead, the Marshal library is

invoked to communicate with the server.

This page has been generated by xua

http://xuarizmi.ir/

INTERFACES & ROUTES;

THE PROJECT 'S FRONTLINE

Introduction

 Interfaces are the frontline of the project and are written in pure PHP language. When the Server

project receives a request, the Route Detection Unit which is implemented as a service called

RouteService , decides what Interface to execute based on a file called routes.xrml . The Interface

then returns a string as the response.

Definition

Structure

 An Interface block has the following structure.

Path\To\Interface\InterfaceName

Description of this Interface, probably in markdown formatting

Interface [extends Path\To\Another\Interface\InterfaceName] {

 INTERFACE_BODY

}

Note that there is no name for the Interface. An Interface name is its file path. Each file can contain

at most one block, and the block inherits its name from the file. It is a good practice to have a

comment in the first line of the file describing where the file is located.

Hierarchy

 Interfaces can come in a hierarchy, just like PHP classes. It is possible to call the parent Interface

body in the child Interface since the Interface content is written in PHP. Just note that the method,

when compiled to PHP, is called execute . So, to execute the parent Interface body, one must write

parent::execute() .

Xua's Route Minimal Language

 The file routes.xrml is written in a specific language called XRML, with the following grammar.

An example of this file would be as following.

We use this file to explain all of the XRML features step-by-step.

Literal Routing & The Routes Tree

 When the Server project receives a request, the main file asks the RouteService to find the desired

Interface. The Route Service then explodes the requested URL into different pieces by the /

character.

Assume the client sends a GET request to localhost:8000/media/post . The result of exploding this URL

would be the list ['media', 'post'] . The Route Service then looks into the routes.xrml as a tree,

finds the node matching the list's first item, and gets the subtree. Then looks for the list's second

item in the subtree and continues the process until it finishes the list. Then looks into the Interfaces

provided for that line and chooses the one matching the request method, Post\GetAll . If it can't find

such an Interface, it throws an Exception called RouteException , which the ExceptoinService will

handle.

Note. The / route is only valid on the root tree, and no subtree can contain such a node. Violating

this rule will result in a RouteDefinitionException .

All Methods At Once

There are two ways to define Interfaces. One is to define an Interface for each HTTP method, in

which case if the request method is not defined, the Route Service will throw a Route Exception.

However, if one wants to set an Interface for all methods without specifying them, they can just set

the Interface without any methods provided, so the Route Service will divert all requests on that

URL to the defined Interface regardless of the HTTP method.

In the example above, Route Service will divert all requests to localhost:8000/404 to the

Xua\NotFoundInterface .

Variables & Priorities

 Assume the client sends a GET request to localhost:8000/media/post/12/delete . The result of

exploding this URL would be the list ['media', 'post', '12', 'delete'] . The Route Service gets the

subtree with post as root, and in that tree, it can't find any route equal to the literal string '12' ,

but instead, there is the route {id} with opening and closing braces indicating a variable. This way,

the Route Service knows it can match any string with that route, and it'll save the string '12' under

the variable name, which is id . The Route Service will process further until it finds the Interface

Post\RemoveOne . Now the variable is available in the body of that Interface as RouteService::

$routeArgs['id'] .

Note. If one of the siblings of a variable matches the desired route section, Route Service

processes that node since literal route sections have a higher priority than the variable route

sections; but if further processing the route would result in Route Exception, the Route Service

would come back until the latest variable and processes the route in that direction, if it can't find

the route in that direction either, it goes back and does the same procedure until possible.

Note. There can't be two variable route sections as siblings, as this will result in a

RouteDefinitionException .

This page has been generated by xua

http://xuarizmi.ir/

SUPERS;

A WHOLE LEVEL BEYOND TYPES

Introduction

 Super types or simply supers are parametric types. Read Super Types section under Units chapter

for theoretical explanations. In this chapter, we focus on practical details of defining and using

supers.

Effects on the projects

 Each super results in a PHP class in the Server project, extending the abstract class Super or

another Super.

Also, the same happens in the Marshal library with respect to the language. However, the front-end

clone of the super does not contain the predicate and is only accessible in the MUU (Marshal/

Unmarshal Unit).

Terminology

 Assume A is a set, the predicate P is called characteristic predicate of A if $P(x) \iff x \in A$.

We can use set A and predicate P alternatively since they both carry the same concept.

A type is a set occupied with functions M, U, and T. Read Super Types section under Units

chapter to see what these objects are. We usually show a type set by its characteristic predicate

instead of the set itself.

Assume $T = (P, Y, M, U)$. We say type T explicitly accepts value x if $P(x)$ is true, and say

type T implicitly accepts value x, if $P(x)$ is true or $P(U(x))$ is true. If type T explicitly

(implicitly) accepts x, we say x explicitly (implicitly) fits in T. As a convention, when we say

T accept x, we mean T implicitly accepts x, and the same is true for fitting.

A Super Type or simply Super is a function that receives some arguments and returns a type. This

type is called an instance of the Super Type.

Definition

Structure

 A super block definition has the following structure.

Path\To\Super\SuperName

Description of this Super, probably in markdown formatting

Super [extends Path\To\Another\Super\SuperName] {

 [arguments {

 [const] argName0 : Type0 [= DEFAULT_0]; # Description of argName0

file:///var/www/xuarizmi/docs/Units.html#Super_Types
file:///var/www/xuarizmi/docs/Units.html
file:///var/www/xuarizmi/docs/Units.html#Super_Types
file:///var/www/xuarizmi/docs/Units.html

 ... ; # ...

 [const] argNameN : TypeN [= DEFAULT_N]; # Description of argNameN

 }]

 [validation { VALIDATION_BODY }]

 predicate { PREDICATE_BODY }

 [type<TARGET_0> { TYPE_0_BODY }]

 [marshal<TARGET_0> { MARSHAL_0_BODY }]

 [unmarshal<TARGET_0> { UNMARSHAL_0_BODY }]

 ...

 [type<TARGET_N> { TYPE_N_BODY }]

 [marshal<TARGET_N> { MARSHAL_N_BODY }]

 [unmarshal<TARGET_N> { UNMARSHAL_N_BODY }]

}

Note that there is no name for the Super. A Super name is its file path. Each file can contain at

most one block, and the block inherits its name from the file. It is a good practice to have a

comment in the first line of the file describing where the file is located.

Arguments

 It is possible to define a set of arguments for a Super. The resulting type is based on those

arguments. For each argument, it is possible to set a default value, and it is mandatory to set a

type. However, the only way to mention a type is to call a super that returns a type, and we need

types to define supers. So how to define the first Super? The answer is we do not NEED types to

define a super since we do not need the super to have any argument. This fact leads us to the very

first Super, called Universal .

It is possible to define some arguments as constant, which means the programmer cannot pass

that argument to the Super. This feature is useful when defining a child super. Read more in

Hierarchy.

\Xua\Supers\Universal

Super {

 Predicate {

 return true;

 }

}

After this, we may use the Universal Super to define other Supers. Although, we may define other

Supers without using arguments, such as Boolean and Trilean .

Validation

 The validation block is responsible for checking if arguments passed to the Super meet desired

conditions. It is an optional Block, and if it is not provided, any argument that fits in the

corresponding type will be accepted.

The body is written in pure PHP. All super arguments are available as PHP variables $this->argName0

$this->argName0 , ..., $this->argNameN , There is also another available variable $exception , which has a

method called setError , and one can use it to add an error if some wanted conditions are not met.

Predicate

 The Predicate is the main and only required block of a super. This block defines the characteristic

predicate.

The body is written in pure PHP. All super arguments are available as PHP variables $this->argName0

$this->argName0 , ..., $this->argNameN , along with two extra variables $input and $message . The

variable $input contains the value which the predicate should check. The value true must be

returned if $input explicitly fits in the type, and false otherwise.

When returning false , it is possible to provide a reason of why $input failed to fit in the type. The

$message variable is responsible for storing this reason.

Marshal & Unmarshal

 Blocks Marshal and Unmarshal can be written for any supported language. Therefore these block

names are valid: marshal<php> , marshal<database> , marshal<dart> , marshal<php> , marshal<java> ,

marshal<javascript> , marshal<kotlin> , marshal<objectivec> , and marshal<swift> . The body of database

blocks, is written in PHP, but the methods are used for database store and restore procedures.

Any unwritten block is assumed to be the identity function.

The function of the marshal block is to cast a given value into a value that can be transmitted on

the network or stored in the database (usually string, integer, or a stream of bytes) in an invertible

way. The unmarshal does the inverse of the marshal function.

When the language is PHP (target is php or database), all Super arguments are available as PHP

variables $this->argName0 , ..., $this->argNameN , along with an extra variable $input , and the

marshaled/unmarshaled data must be returned. When calling Marshal , it is guaranteed that $input

explicitly fits in the type. But when calling unmarshal , it is possible that $input is not a valid input; in

that case, the convention is to return the input value itself.

For other languages, the same concept holds with respect to the language syntax.

Native Type

 There are some scenarios where we need to declare a type (the result of calling a Super) in

another language. For example, if we use a type as the type of an Entity field, we must tell the

database server to store the values. This declaration is the job of the Type block. All super

arguments are available as PHP variables $this->argName0 , ..., $this->argNameN . And the block must

either return a string identifying the database type (for example, VARCHAR(100)) or null value, which

means the type is not available in the specified target. If the block is not provided, the null return

value is assumed.

Hierarchy

 Supers can come in a hierarchy just like PHP classes, and each block is a class method. It is

possible to call the parent method in the child method since the block's content is written in PHP. It

is also possible to call parent methods in non-PHP blocks with respect to the language syntax.

To do so, it is mandatory to know the name of the class method generated by each block. Here is a

list of blocks with corresponding methods.

PHP Blocks

Validation => protected _validation(SuperValidationException $exception)

Predicate => protected _predicate($input, string &$message)

Marshal<database> => protected _marshalDatabase($input)

Unmarshal<database> => protected _unmarshalDatabase($input)

Marshal<php> => protected _marshal($input)

Unmarshal<php> => protected _unmarshal($input)

Type<database> => protected _databaseType()

Type<php> => protected _phpType()

non-PHP Blocks

Marshal<FRONT_LANG> => protected _marshal($input)

Unmarshal<FRONT_LANG> => protected _unmarshal($input)

Type<FRONT_LANG> => protected _type()

So for example if one needs to call parent predicate in php, they may write

parent::predicate($input) .

Also, the arguments of child super override the ones in the parent. This override includes type,

default value, and being constant. It is also possible to add new arguments to the type. Read

Examples for more details.

Visibility

 The visibility of supers is controlled via the Marshal and Unmarshal blocks. Although the supers are

never accessible in the front-end project, the Marshal library can use these methods to send and

receive values of a type. However, if the methods are not available, this means that we do not

want the Marshal library to be able to use them.

By the way, there is usually no point in controlling Super's visibility.

Usage

 It is possible to use a defined super in both PHP and Xua languages, but not in Marshal library.

Inside PHP

 Although it is not usually helpful to work with supers inside PHP codes, it is possible.

Make a type

 The following code makes a type by giving arguments to a super.

$type = new Path\To\Super\SuperName([

 'argName0' => $value0,

 ...,

 'argNameN' => $valueN,

]);

Determine a type

 Assume a type is given in a variable and we need to know what type is it. We can try to find the

class of the object but what about arguments? The parameters method returns the array that was

given to the Super at first place, and the toString method returns a string that describes the type.

var_dump(get_class($type));

var_dump($type->parameters());

var_dump($type->toString());

This code dumps the following.

string "Path\To\Super\SuperName"

[

 argName0 => value0,

 ...,

 argNameN => valueN

]

string "Path\To\Super\SuperName(argName0 = value0, ..., argNameN = valueN)"

Accepts, Implicit & Explicit

 There are three accepts functions defined on a type.

 This function will return true only if the value explicitly fits in the type. The second argument is

optional, and if the return value is false, the function may fill it with a reason.

if ($type->explicitlyAccepts($value, $reason)) {

 var_dump($value);

 echo 'is of type ' . $type->toString();

} else {

 echo 'Rejected, because:' . $reason;

}

 This function will return true if the value explicitly fits in the type, or fits after unmarshaling. The

unmarshaling methods must be determined by the caller. The function tries the value itself first,

then tries to unmarshal and check if the value fits by given methods, one by one. If not passed to

the function, the default value [self::METHODIDENTITY, self::METHODUNMARSHAL,

self::METHODUNMARSHALDATABASE] is assumed.

if ($type->implicitlyAccepts($value, $reasons, [self::METHOD_IDENTITY, self::METHOD_UNMARSHAL

])) {

 var_dump($value);

explicitlyAccepts

implicitlyAaccepts

 echo 'kinda fits in the type ' . $type->toString();

} else {

 echo 'fully rejected because of the following reasons';

 var_dump($reasons);

}

 This function does the same job of implicitlyAccepts , but may alter the original value while trying

to fit it in the type.

$originalValue = $value;

if ($type->accepts($value, $reasons, [self::METHOD_IDENTITY, self::METHOD_UNMARSHAL

])) {

 var_dump($originalValue);

 echo 'was changed to';

 var_dump($value);

 echo 'to fit in type ' . $type->toString();

} else {

 echo 'fully rejected because of the following reasons';

 var_dump($reasons);

}

Marshal & Unmarshal

 There are two types of marshal and unmarshal functions available in the server project.

 Functions marshal and unmarshal are responsible to marshal and unmarshal values for purpose of

network transmissions.

$marshaledValue = $type->marshal($value);

$originalValue = $type->unmarshal($marshaledValue);

if ($value !== $originalValue) {

 var_dump('something is wrong with marshal/unmarshal functions of ' . $type->toString());

}

 Functions marshalDatabase and unmarshalDatabase are responsible to marshal and unmarshal values

for purpose of storing and restoring into/from database.

$marshaledValue = $type->marshalDatabase($value);

$originalValue = $type->unmarshalDatabase($marshaledValue);

if ($value !== $originalValue) {

accepts

Network transmissions

Database Storing & Restoring

 var_dump('something is wrong with marshalDatabase/unmarshalDatabase functions of ' . $type->toString());

}

Native Type

 The functions phpType databaseType have no arguments and return a string that declares the type in

PHP and database engine syntax. phpType is mostly used in PHPDocs to declare the classes

properties type, while databaseType is mostly used to tell the database server how the type values

must be stored. These functions are hardly helpful in programming.

Inside Xua

 The main usage of Supers is to declare types for Xua Super arguments, Entity fields, and Method

request and response signatures (and Method field signatures for VARQUE Methods). To mention a

type, one must call a Super and give it arguments. The type then can be used for type declaration.

The syntax is the following.

Path\To\Super\SuperName(

 argName0 = constant0,

 ...,

 argNameN = constantN,

)

Examples

Range

 In this section, we want to work with a Super that accepts the range of integers in $[a, b)$.

Definition

 First of all, we need to define the Super. We put it in the file Supers/Integers/Range.xua .

 A value of this type needs to be an integer so we can reuse marshal, unmarshal, and native type

methods of the Integer Super, and also the predicate of that Super would be useful to check if the

value is an integer. So it seems like a good idea to extend the Super Integer .

Super extends Integer

 We need to have two arguments determining the start and end of the range. The arguments must

be integer themselves.

Extension

Arguments

Supers\Integers\Range

Super extends Integer {

 arguments {

 start : Integer();

 end : Integer();

 }

 validation {

 # TODO implement

 }

 predicate {

 # TODO implement

 }

}

 For the validation, we must check that the second number is not less than the first one. Note that

we do not need to check if the type of arguments is integer since we already declared their type so

the type checking is automatically done.

validation {

 if ($this->end < $this->start) {

 $exception->setError('end', 'The argument `end` cannot be less than the argument `start`.');

 }

}

 We can just simply check if the $input is an Integer and is in the range.

Predicate {

 return parent::_predicate($input) and $this->start <= $input and $input < $this->end;

}

But we can make it a little more sophisticated by providing a reason of why the value may fail to

fit.

Predicate {

 if (!parent::_validation($input, $message)) {

 // The message is already filled here by the parent _validation

 return false;

 }

 if ($input < $this->start) {

 $message = $input . ' is less than ' . $this->start;

 return false;

 }

 if ($input >= $this->end) {

Validation

Predicate

 $message = $input . ' is not less than ' . $this->end;

 return false;

 }

 return true;

}

Note that it is OK to fill the $message when the return value is true . Xua automatically clears the

$message in that case.

 The defined Super is ready-to-go with no further modifications; since the Integer Super includes

the desired Marshal and Unmarshal functions and Range inherits them. However, for the purpose of

this documentation, we override them with a new network transmit marshaling system.

The silly idea is to shift starting number to zero to have smaller integers which are easier to

transmit (practically useless). For example The range $[1000, 1100)$ can be shifted to $[0, 100)$.

Marshal<php> {

 return $input - $this->start;

}

Unmarshal<php> {

 return $input + $this->start;

}

Marshal<javascript> {

 return input - this.args.start;

}

Unmarshal<javascript> {

 return input + this.args.start;

}

 The PHP type is inherited and returns int , which is great. However, the database type is an

interesting part of the definition since we can determine the length of MySQL INT by the range

limits.

We know that INT(n) can store values in range $[-2^{n-1}, 2^{n-1}]$. So it is efficient to find the

least n such that this range contains our range. First, we find the maximum absolute value that

can fit in the type.

$min = $this->start;

$max = $this->end - 1;

$absMax = max(abs($min), abs($max));

Let us say this number is M. we must find n such that $M \leq 2^{n-1}$. $$\begin{eqnarray}

M \leq 2^{n-1} & \iff & \log_2(M) \leq n - 1 \\ (\text{Since $n - 1$ is integer}) & \iff & \lceil \log_2(M)

\rceil \leq n - 1 \\ & \iff & \lceil \log_2(M) \rceil + 1 \leq n \\ \end{eqnarray}$$

Marshal and Unmarshal

Native Type

So the minimum value of n is $\lceil \log_2(M) \rceil + 1$.

$n = ceil(log($absMax, 2)) + 1;

This leads us to the following database type.

type<database> {

 $min = $this->start;

 $max = $this->end - 1;

 $absMax = max(abs($min), abs($max));

 $n = ceil(log($absMax, 2)) + 1;

 return "INT($n)";

}

Validation

 Assume that we want another Super with the same features, but only for positive values. We can

extend again what we already have.

Supers\Integers\PositiveRange

Super extends Range () {

 validation {

 parent::validation();

 if ($this->start<= 0) {

 $exception->setError('start', 'The range must be positive.');

 }

 }

}

Constant Arguments

 Or assume we want a range super that can only start at zero.

Supers\Integers\NaturalUpperLimit

Super extends Range {

 arguments {

 const start : Integer() = 0;

 }

}

Note the way we overrode the start with default value, but also set it constant so the caller cannot

change it.

Further Hierarchy

$type = new NaturalUpperLimit(['start' => 1, 'end' => 2]);

This code will result in an uncaught SuperValidationException .

Marshaling

 But better than these, assume we use the network transmit marshaling procedures for the

database, which actually impacts the table size. Furthermore, we can remove the silly network

transmit marshaling procedure. Also, note that we must override the type<database> as well.

Supers\Integers\EfficientRange

Super extends Range () {

 Marshal<php> {

 return $input;

 }

 Unmarshal<php> {

 return $input;

 }

 Marshal<javascript> {

 return $input;

 }

 Unmarshal<javascript> {

 return $input;

 }

 Marshal<database> {

 return $input - $this->start;

 }

 Unmarshal<database> {

 return $input + $this->start;

 }

 DatabaseType {

 $max = $this->end - $this->start - 1;

 $n = ceil(log($max, 2)) + 1;

 return "INT($n)";

 }

}

New Arguments

 Another example is when we want to add arguments to a Super. For example, assume we want a

step argument. By default, the step is one, but if we set the step to three, the type accepts start

and every third number.

Supers\Integers\StepRange

Super extends Range {

 arguments {

 step : Integer() = 1;

 }

 validation {

 parent::validation();

 if (step < 1) {

 $exception->setError('step', 'The step must be at least 1.');

 }

 }

 predicate {

 if (!parent::predicate($input, $message)) {

 return false;

 }

 if ($input - $this->argument['start'] % $this->argument['step'] != 0) {

 $message = "value {$input} minus starting point {$this->argument['start']} is not devisable by step value {$this->argument['step']}.";

 return false;

 }

 return true;

 }

}

Usage

 After defining a super, we can use it to define types and use them.

 First, Let us define a type that accepts the range $[10, 30)$. We use the EfficientRange .

$type = new EfficientRange(['start' => 10, 'end' => 30]);

Let us see how Xua stringifies this type.

var_dump($type->toString());

This code dumps Supers\Integers\EfficientRange(start = 10, end = 30) .

The value 25 explicitly fits in the type, while the value 5 implicitly fits.

$value = 25;

var_dump($type->explicitlyAccepts($value)); # dumps true

$value = 5;

var_dump($type->implicitlyAccepts($value)); # dumps true

Of course the value 25 also fits in the type implicitly. This is because the function first checks if the

value explicitly fits.

$value = 25;

var_dump($type->implicitlyAccepts($value)); # dumps true

Inside PHP

We know that value 15 is ambiguous. It can be interpreted as 15 itself, a value in range, or the

result of marshaling 25 . Let us call accept and check the result.

$value = 15;

var_dump($type->accepts($value)); # dumps true

var_dump($value); # dumps 15

Since the function first tries the explicit, if the value fits explicitly, function does not change the

value. What about 5 that can only fit implicitly?

$value = 5;

var_dump($type->accepts($value)); # dumps true

var_dump($value); # dumps 15

This time the function tries to fit the value explicitly and fails, so it goes for unamrshaling, which

leads to accept.

We know the value 5 does not fit explicitly, but we may wonder why. (It is super obvious but is a

good way to see how to get the reason from the function.)

$value = 5;

var_dump($type->explicitlyAccepts($value, $reason)); # dumps false

var_dump($reason); # dumps '5 is less than 10'

What about value 30 ?

$value = 30;

var_dump($type->explicitlyAccepts($value, $reason)); # dumps false

var_dump($reason); # dumps '30 is not less than 30'

But we know 30 does not even implicitly fit.

$value = 30;

var_dump($type->accepts($value, $reasons)); # dumps false

var_dump($reasons);

This function fills the $reasons with an array, reasoning about each failure.

[

 'identity' => '30 is not less than 30',

 'unmarshal' => '30 is not less than 30',

 'unmarshalDatabase' => '40 is not less than 30',

]

The $reason variable can work as a log; for example, we try the code above with 5 and get the

following.

[

 'identity' => '5 is less than 10',

 'unmarshal' => '5 is less than 10',

 'unmarshalDatabase' => null,

]

We can see there is no reason for the unmarshalDatabase , and it makes sense since the value fits

using this unmarshal method.

We know that the storing in the database is done by marshaling. The marshaled values are in $[0,

20)$.

var_dump($type->DatabaseType()); # Dumps 'INT(6)'

In this case, there is no efficiency since the original values would only need 6 bits too. Although we

could make this better if we shifted the center of the range to zero instead of starting point. That

way, we would have the range $[-10, 10)$ which needs only 5 bits to store. By the way, none of

this is useful because MySQL occupies at least a byte which is 8 bits, and there is no difference

between 5 and 6 in practice. Although this marshaling method may come in handy for big values,

Xua's official Range does not use it because of the ambiguity.

 We may use a Super to define another Super.

Supers\Gender

Super {

 arguments {

 possibilities : Range(start = 2, end = 4) = 2;

 }

 predicate {

 $choices = ['male', 'female'];

 if ($this->possibilities == 3) {

 $choices = ['male', 'female', 'non-binary'];

 }

 $message = '$input is not in ' . implode(", ", $choices);

 return in_array($input, $choices);

 }

}

Note how we set the $message without caring about the return value. Xua automatically clears the

$message if the return value is true .

Inside Xua

Good News

 Although defining a simple Super seems easy, defining a complete Super with all features in many

languages seems exhausting. The good news is, Xua provides a set of predefined supers that cover

almost any need. We discuss them in the next chapter.

This page has been generated by xua

http://xuarizmi.ir/

PREDEFINED SUPERS;

@TODO

Introduction

 @TODO

This page has been generated by xua

http://xuarizmi.ir/

ENTITIES;

THE BEATING HEART

Introduction

 Xua can be configured to communicate with a database server (usually MySQL), but the

programmer must specify the database structure. To do so, Xua offers Entity Blocks. Read Entities

section under Units chapter for theoretical explanations. In this chapter, we focus on practical

details of defining and using entities.

Effects on the projects

 Xua will generate a PHP class extending a Xua abstract class called Entity for each Entity Block

the programmer creates. These Entity classes are in a one-to-one correspondence with database

tables, and each row of the table can be corresponded by an instance of the table's corresponding

class.

Also, the same happens in the Marshal Library with respect to the language. However, the front-

end clone of the entities only contains method signatures, and the bodies are just network calls.

Terminology

Server Project Side

 A Literal Name is a literal string containing only alphanumeric characters, starting with a

lowercase character. The set of all Literal Names is shown by \mathbb{L}.

The set of all values possible to store in a variable is shown by \mathbb{X}.

A Dictionary is a partial function $D: \mathbb{L} \to \mathbb{X}$ and is usually expressed by all

of its records. The set of all dictionaries is shown by \mathbb{D}.

A Field (T, D) is a tuple, where $T \in \mathbb{T}$ is a type (described in Supers chapter) called

Field Type and $D \in \mathbb{X}$ is a value called Field Default Value (providing D is optional).

Note that if D is provided, it is mandatory that $D: T$.

An Entity Signature is a dictionary F such that $F(s) = (T_s, D_s)$ or $F(s)$ is undefined, where

s is a Field Name. Domain of the F is called the Set of Field Names of the Entity Signature.

The set $\{ \mathsf{ASC}, \mathsf{DESC} \}$ is called the set of all Order Indicators and is shown

by \mathbb{O}.

An Index is a k-tuple of tuples (f, o) with an extra boolean determining if the index is unique,

where f is a Field Name, and $o \in \mathbb{O}$ is an Order Indicator. Indexes are used in the

MySQL engine for faster select queries. We try to have a simple explanation here. Let $i_0 = \Big(

\big((f_0, o_0), \dots, (f_n, o_n) \big), u \Big)$ be an Index. Intuitively speaking, The MySQL engine

will create a list of pointers to data rows, sorted by the mentioned field, which makes it faster to

search on those fields. Also if the Index is marked as unique, i.e., $u = \mathsf{1}$, the

file:///var/www/xuarizmi/docs/Units.html#Entities
file:///var/www/xuarizmi/docs/Units.html
file:///var/www/xuarizmi/docs/Supers.html

combination of fields must be unique in data, i.e., we cannot have two rows with same value of

f_0, same value of f_1, ..., and same value of f_n at the same time.

An Entity Indexes is a set of indexes I.

An Entity Validation is a function with no output that inputs a data row and checks if the data is

valid. In case of invalid data, an exception is thrown. For example, assume we store data about

some events, each event has two fields, start_time and end_time , and the start must be sooner

than the end. The Entity Validation checks if this condition holds, and if the end is sooner than the

start, it will throw an EntityFieldException .

An Entity Class is a triplet (F, I, V) of fields, indexes, and the validation function.

An Entity Instance is an instance of an entity class, which contains actual values for entity fields.

MySQL Side

 A database is a set of tables; each table has a structure consisting of columns, and a set of rows as

data.

insert is the action of adding new rows to a table.

select is the action of retrieving table rows on some specific conditions.

update is the action of modifying some table rows on some specific conditions.

delete is the action of removing some table rows on some specific conditions.

Correspondence

 Each table is in one-to-one correspondence with an Entity Class. Methods of these classes can

communicate with the database server to select, insert, update, and delete data. Fields of the

entity class represent the columns of the table, and instances of the class represent the rows of the

table.

Definition

Structure

 An entity block has the following structure.

Path\To\Entity\EntityName

Description of what this Entity is all about, probably in markdown formatting.

Entity [extends Path\To\Another\Entity\EntityName] {

 fields {

 field0 : type0 [= DEFAULT_0]; # Description of field0

 ... ; # ...

 fieldN : typeN [= DEFAULT_0]; # Description of fieldN

 }

 [indexes : {

 ([-]filedName00, ..., [-]fieldName0K)[*]; # Description of index number 0

 ... ; # ...

 ([-]filedNameM0, ..., [-]fieldNameML)[*]; # Description of index number M

 }]

 [validation : { VALIDATION_BODY }]

 [override<METHOD_NAME_0> { METHOD_0_BODY }]

 ...

 [override<METHOD_NAME_P> { METHOD_P_BODY }]

}

Note that there is no name for the Entity. An Entity name is its file path. Each file can contain at

most one block, and the block inherits its name from the file. It is a good practice to have a

comment in the first line of the file describing where the file is located.

Note. All entities have a read-only field called id , of its own type Identifier() , defined implicitly.

The field id is used in some underlying Xua codes and cannot be removed.

Fields

 Each Entity represents a class and is responsible for storing properties of its instances as data in

the database. The object (instance) can have different properties, each with its type and default

value. These properties are called fields and should be defined with their type and default value in

the fields part.

Indexes

 An index is a list of fields along with a boolean determining if the index is unique. Indexes are used

in the database engine for faster select queries. All fields are assumed to be ascending by default

unless the programmer specifies one as descending by a - sign before it, which tells the database

engine to sort that field in descending order. A * sign at the end of an index definition makes it a

unique index. If the index is marked as unique, the combination of fields must be unique in data.

Note that the implicit field id is a unique field by default.

Validation

 The body of the validation block is written in pure PHP.

The validation block is responsible for checking if an instance of the Entity is valid, and in case of

invalid data, an EntityFieldException must be thrown. For example, assume we have a table of

restaurants in an entity called Restaurant . This Entity has two fields, title and active . The title

field is unique, but it is impossible to mark it as a unique index in indexes because we may have

many inactive records sharing the same title, and the title is unique among the active restaurants.

(There is a workaround here to solve this problem only using indexes , but for the purpose of this

documentation, we assume there is not.) We can check this in the validation block and throw an

EntityFieldException if the title is duplicate.

Overriding Methods

 Xua generates a PHP class from each entity, extending Entity . This class have many methods

which are possible to override. Here is a list of these methods, with the PHP method that is actually

being overridden.

Override<initialize> => protected static _initialize();

Override<getOne> => protected static _getOne(Condition $condition, Order $order, string $caller);

Override<store> => protected _store(string $caller);

Override<storeQueries> => protected _storeQueries(string $caller);

Override<delete> => protected _delete(string $caller);

Override<getMany> => protected static _getMany(Condition $condition, Order $order, Pager $pager, string $caller);

Override<countMany> => protected static _countMany(Condition $condition, Order $order, Pager $pager, string $caller);

Override<deleteMany> => protected static _deleteMany(Condition $condition, Order $order, Pager $pager, string $caller);

Override<setMany> => protected static _setMany(array $changes, Condition $condition, Order $order, Pager $pager, string $caller);

Xua provides final methods that include the actual logic, which one can use when overriding a

method. Here is a list of these method names.

Name in .xua file Original Method

<initialize> _x_initialize

<getOne> _x_getOne

<store> _x_store

<storeQueries> _x_storeQueries

<delete> _x_delete

<getMany> _x_getMany

<countMany> _x_countMany

<deleteMany> _x_deleteMany

<setMany> _x_setMany

So, as an example, one can override the storeQueries procedure like this.

Override<storeQueries> {

 if (isset(static::fieldSignatures()['updatedAt'])) {

 $this->updatedAt = DateTimeService::now();

 }

 try {

 $return = static::_x_storeQueries(); // original Xua's store Queries logic

 LogService::logDatabaseChange($this);

 } catch (Exception as $e) {

 LogService::logDatabaseException($e);

 }

 return $return;

}

Usually, the original methods suffice, and there is no need to override them, but in case of

necessity, be careful not to corrupt the functionality.

Hierarchy

 Entities can come in a hierarchy just like PHP classes, and the validation block is a class method.

protected function _validation();

Also, the fields and indexes of a child entity override the ones in the parent. This override includes

the type and default value. Also, it is possible to add new fields or indexes to the type, but it is not

possible to remove existing fields. Read Examples for more details.

Visibility

 The visibility of entities is controlled by overriding methods. There is an additional variable

accessible in all methods, including validation, called $caller . This variable contains a string telling

what party called this method. The values are accessible as class constants in the class

\Xua\Tools\Visibility . These values are Visibility::CALLER_PHP , Visibility::CALLER_DART , etc.

So it is possible to block foreign callers like the following.

if ($caller != Visibility::CALLER_PHP) {

 throw AccessForbiddenException();

}

But there is more than this. It is possible to customize procedures according to the caller. For

example

if ($caller != Visibility::CALLER_PHP) {

 if ($this->id) {

 if (!UserService::hasAccess(AccessService::MODIFY_SOME_ENTITY)) {

 throw AccessForbiddenException();

 }

 } else

 if (!UserService::hasAccess(AccessService::CREATE_SOME_ENTITY)) {

 throw AccessForbiddenException();

 }

 }

}

$this->updatedByCaller = $caller;

Note. Accessing The entities through URPI is disabled by default, and therefore the $caller is

always PHP. One can enable this feature, but they must be super careful since it may result in

severe vulnerabilities.

Special Field Types

 In addition to defined supers that can be called to generate type for field types, Xua offers two

categories of unusual types that make the development of a project significantly easier and faster

and the resulting project more efficient and more secure. Here we try to cover these two

outstanding features of Xua.

Virtual Field Supers

 In some cases, one needs some fields for an entity that does not contain new data, so if defined as

regular fields, this will result in duplicate/not-synced data. These supers will help mix up other

fields and generate a new field that is calculated each time called but not stored. There are two

types of virtual supers. One is calculated by the PHP engine and the other by the database engine.

The Database Virtual Field is used when the programmer wants to use the result in a query, e.g.,

using in condition or order, while the PHP Virtual Field is used for more complicated mixtures of

fields.

PHP Virtual Field

 The PHP Virtual Field has the following signature.

PHPVirtualField{

 arguments {

 getter: Callback(

 nullable = false,

 parameters = [

 {

 name: null,

 type: @php(Entity::class),

 allowSubtype: true,

 required: true,

 checkDefault: false,

 default: null,

 passByReference: false,

 },

]

);

 setter: Callback(

 nullable = true,

 parameters = [

 {

 name: null,

 type: @php(Entity::class),

 allowSubtype: true,

 required: true,

 checkDefault: false,

 default: null,

 passByReference: true,

 },

 {

 name: null,

 type: null,

 allowSubtype: true,

 required: true,

 checkDefault: false,

 default: null,

 passByReference: false,

 },

]

) = null;

 }

 ...

}

 Let us say we have fields gender , firstName , and lastName in entity User , and want to create a field

called title based on these fields. We can define it like this.

title : PHPVirtualField (

 getter = (User $user) => {

 if ($user->gender == User::GENDER_MALE) {

 $honorific = "Mr ";

 } elseif ($user->gender == self::GENDER_FEMALE) {

 $honorific = "Miss ";

 } else {

 $honorific = "";

 }

 return $honorific . $user->firstName . " " . $user->lastName;

 }

);

Database Virtual Field

 The Database Virtual Field has the following signature.

DatabaseVirtualField{

 arguments {

 getter: Callback(

 nullable = false,

 parameters = [

 {

 name: null,

 type: @php(Entity::class),

PHP Virtual Field Example

 allowSubtype: true,

 required: true,

 checkDefault: false,

 default: null,

 passByReference: false,

 },

 {

 name: 'params',

 type: 'array',

 allowSubtype: true,

 required: true,

 checkDefault: false,

 default: null,

 passByReference: false,

 },

]

);

 }

 ...

}

Note that one cannot set a database virtual field, and therefore there is no setter method available

on this field.

Note that another method argument is available called params , which is used to pass some extra

parameters into the getter method. We discuss it in more detail in the Example section.

 Let us say that we have an entity called City , and we need a field that tells if the city is a town or

a big city. At the moment, we consider cities that have a population of less than a million to be

town, but this might change; either the population may change, or we may think of the area as an

item, or we can have a more complicated way that involves both population and area of a city. So

we cannot calculate the field isTown each time we need it somewhere (this may result in duplicate

code). Instead, we need a field that does this so we can change it later and the change affect all

usages. We can do this by defining the field isTown this way.

isTown : DatabaseVirtualField (

 getter (City $city, array $params) => {

 return "{Entity::F(self::_POPULATION)->name} < 1000000";

 }

)

For a more complex example, consider this scenario. Let us say that we have an entity called

Restaurant , and we want to sort the restaurants by distance in ascending order, so we need a field

called distance. A PHP Virtual Field can do this, but in that case, we need to fetch all restaurants

from the database server and then sort them, which takes a significant amount of time and space.

Instead, we can define it as a Database Virtual Field that allows us to use it while creating an order

Database Virtual Field Example

expression and tell the database server to sort the restaurants by itself and give us the first page.

We define this field using the following code.

distance : DatabaseVirtualField (

 getter (City $city, array $params) => {

 here = $params['here']; # Here, one can understand the application of the params argument.

 $lat0 = "(PI() * {$here->lat} / 180)";

 $long0 = "(PI() * {$here->long} / 180)";

 $lat1 = "(PI() * {Entity::F(self::_GEO_LAT)->name} / 180)";

 $long1 = "(PI() * {Entity::F(self::_GEO_LONG)->name} / 180)";

 $a = "(

 POWER(SIN(($lat0 - $lat1) / 2), 2) +

 COS($lat0) *

 COS($lat1) *

 POWER(SIN(($long0 - $long1) / 2), 2)

)";

 $c = "(2 * ATAN2(POWER($a, .5), POWER(1 - $a, .5)))";

 $d = "6371000 * $c";

 return $d;

 }

)

Entity Relation

 In almost any back-end project, some Entities are in relation with each other. For example, in a

simple food delivery app, restaurants are handling orders, orders have items, items are being liked/

commented by users, users are ordering orders, restaurants are being liked/ commented by users,

etc.

There is a unique and special Super called EntityRelation responsible for handling such relations.

But before we discuss this Super, we need to discuss different relations classes based on how we

implement them.

A Little Formalism on Relation Classes

 Assume \mathcal{A} and \mathcal{B} are two Entities, and A and B are sets of their

instances, respectively. $R \subseteq A \times B$ is called a relation between \mathcal{A} and $

\mathcal{B}$. We define nine different classes of relations based on how we implement them. Any

possible relation fits in one of these classes; actually, all of them fit in NN. However,

choosing the best class when defining the database structure is a matter of restriction and

efficiency.

1. $\mathsf{O11O}$ (Optional one-to-one Optional) is the class of all relations with the following

conditions. \begin{eqnarray*} & i. & \forall a \in A, |\{ b \in B : aRb \}| \leq 1 \\ & ii. & \forall b \in B,

|\{ a \in A : aRb \}| \leq 1 \end{eqnarray*}

2. $\mathsf{O11R}$ (Optional one-to-one Required) is the class of all relations with the following

conditions. \begin{eqnarray*} & i. & \forall a \in A, |\{ b \in B : aRb \}| \leq 1 \\ & ii. & \forall b \in B,

|\{ a \in A : aRb \}| = 1 \end{eqnarray*}

3. $\mathsf{R11O}$ (Required one-to-one Optional) is the class of all relations with the following

conditions. \begin{eqnarray*} & i. & \forall a \in A, |\{ b \in B : aRb \}| = 1 \\ & ii. & \forall b \in B, |\

{ a \in A : aRb \}| \leq 1 \end{eqnarray*}

4. $\mathsf{R11R}$ (Required one-to-one Required) is the class of all relations with the following

conditions. \begin{eqnarray*} & i. & \forall a \in A, |\{ b \in B : aRb \}| = 1 \\ & ii. & \forall b \in B, |\

{ a \in A : aRb \}| = 1 \end{eqnarray*}

5. $\mathsf{ON1}$ (Optional many-to-one) is the class of all relations with the following condition.

\begin{eqnarray*} \forall a \in A, |\{ b \in B : aRb \}| \leq 1 \end{eqnarray*}

6. $\mathsf{RN1}$ (Required many-to-one) is the class of all relations with the following condition.

\begin{eqnarray*} \forall a \in A, |\{ b \in B : aRb \}| = 1 \end{eqnarray*}

7. $\mathsf{1NO}$ (one-to-many Optional) is the class of all relations with the following condition.

\begin{eqnarray*} \forall b \in B, |\{ a \in A : aRb \}| \leq 1 \end{eqnarray*}

8. $\mathsf{1NR}$ (one-to-many Required) is the class of all relations with the following condition.

\begin{eqnarray*} \forall b \in B, |\{ a \in A : aRb \}| = 1 \end{eqnarray*}

9. NN (many-to-many) is the class of all relations.

The Signature

 The EntityRelation has the following signature.

EntityRelation{

 arguments {

 # Standard Arguments

 relatedEntity : Universal() ;

 relation : Enum (values = self::REL_) ;

 invName : Symbol (nullable = true) = null ;

 # Constant Arguments

 const fromMany : Boolean () = false;

 const fromOne : Boolean () = false;

 const toMany : Boolean () = false;

 const toOne : Boolean () = false;

 const is11 : Boolean () = false;

 const isN1 : Boolean () = false;

 const is1N : Boolean () = false;

 const isNN : Boolean () = false;

 const optional : Boolean () = false;

 const nullable : Boolean () = false;

 const required : Boolean () = false;

 const invOptional : Boolean () = false;

 const invRequired : Boolean () = false;

 const hasJunction : Boolean () = false;

 # Definition Side Arguments

 definedOn : Enum (values = self::DEFINED_ON_) ;

 const definedHere : Boolean () = false;

 const definedThere : Boolean () = false;

 const columnHere : Boolean () = false;

 const columnThere : Boolean () = false;

 }

 ...

}

 To create a relation R between two Entities \mathcal{L} and \mathcal{R}, one has to

define a field that represents R with a type generated from the EntityRelation Super. The field

must be defined on \mathcal{L} (called the Left Entity), and the relatedEntity must be set to $

\mathcal{R}$ (called the Right Entity).

 The relation argument determines the class of the relation and has one of the following values.

EntityRelation::REL_O11O

EntityRelation::REL_O11R

EntityRelation::REL_R11O

EntityRelation::REL_R11R

EntityRelation::REL_ON1

EntityRelation::REL_RN1

EntityRelation::REL_1NO

EntityRelation::REL_1NR

EntityRelation::REL_NN

 One can use this field to get all the related rows of a row in the database. The invName argument is

used to do the inverse job. We try to make it clear by an example.

Assume one defines a field called rel on the LeftEntity like this.

LeftEntity {

 fields {

 ...

 rel : EntityRelation(

 relatedEntity = @php(RightEntity::class),

 relation = EntityRelation::REL_NN,

 invName = 'invRel',

)

 ...

 }

 ...

}

The Xua engine automatically generates an implicit field like this.

Related Entity

Relation Class

Name & Inverse Name

RightEntity {

 fields {

 ...

 invRel : EntityRelation(

 relatedEntity = @php(LeftEntity::class),

 relation = EntityRelation::REL_NN,

 invName = 'rel',

)

 ...

 }

 ...

}

Now, one can access the related instances using these fields.

$l = new LeftEntity();

// $l->rel is the set of all instances of RightEntity $r s.t. $l is in relation with $r.

$r = new RightEntity();

// $r->invRel is the set of all instances of LeftEntity $l s.t. $l is in relation with $r.

Note. In the X-to-one cases, the result of retrieving a field is not a set but instead a value that can

be an empty Entity in optional cases.

Note. The invName argument is optional, and if it is not provided, the Xua engine does not generate

the implicit inverse field.

 EntityRelation offers a set of constant arguments calculated based on the relation class, that help

with recognizing a relation better. The names are pretty explanatory by themselves, but here we

provide the way we calculate each.

$this->fromMany = in_array($this->relation, [self::REL_NN, self::REL_ON1, self::REL_RN1]);

$this->fromOne = !$this->fromMany;

$this->toMany = in_array($this->relation, [self::REL_NN, self::REL_1NO, self::REL_1NR]);

$this->toOne = !$this->toMany;

$this->is11 = ($this->fromOne and $this->toOne);

$this->isN1 = ($this->fromMany and $this->toOne);

$this->is1N = ($this->fromOne and $this->toMany);

$this->isNN = ($this->fromMany and $this->toMany);

$this->optional = in_array($this->relation, [self::REL_O11O, self::REL_O11R, self::REL_ON1]);

$this->nullable = $this->optional;

$this->required = !$this->optional;

$this->invOptional = in_array($this->relation, [self::REL_O11O, self::REL_R11O, self::REL_1NO]);

$this->invRequired = !$this->invOptional;

$this->hasJunction = $this->isNN;

Constant Arguments

 There is a particular argument called definedOn which can either be here or there . This argument is

not to be filled by the Xua programmer. If a relational field is defined explicitly on an Entity, the Xua

engine sets this argument to here , and for the implicit inverse field, the value of this argument is

there . There are also some constant fields in this regard; all of these arguments are used by the

Xua core to decide how to store and process data.

$this->definedHere = ($this->definedOn == self::DEFINED_ON_HERE);

$this->definedThere = ($this->definedOn == self::DEFINED_ON_THERE);

$this->columnHere = (($this->is11 and $this->definedHere) or $this->isN1);

$this->columnThere = (($this->is11 and $this->definedThere) or $this->is1N);

Entity Relation Example

 For example, assume we have two Entities called User and City . Further, assume we want a field

in the User entity called currentCity , and we want this field to refer to a row of the City table. We

have to add the following field to the User entity.

User {

 fields {

 ...

 currentCity : EntityRelation(

 relatedEntity = @php(City::class),

 relation = EntityRelation::REL_RNI,

 invName = 'citizens',

)

 ...

 }

 ...

}

Relation. The EntityRelation::REL_RNI stands for a many-to-one relation required on the left side,

which means that no user can be in more than one city simultaneously but needs to be in a city,

although one city can have many citizens at once.

Inverse Name. Here, we created a field called currentCity that shows us a relation between users

and cities, and we can get related cities of a user by $user->currentCity , but how can we get related

users of a city? The Xua engine generates an implicit field based on the invName . So $city->citizens

gives us the list of all users that their currentCity is $city .

Helper Classes

Definition Side Arguments

Field Class

 Each field defined under a name is accessible using the static method Entity::F({fieldName}) of the

entity class. This property is an instance of a class called EntityFieldSignature . This class has the

following structure.

public string $entity,

public string $name,

public Super $type,

public mixed $default = null,

public function p(?array $param = null): array|EntityFieldSignature;

Field Class Example

 Assume the Database Virtual Field Example we have provided above. Here we work a little around

the field $restaurant->distance .

Notations Restaurant::fieldSignatures()[Restaurant::DISTANCE] and Entity::F(Restaurant::_DISTANCE)

both refer to the same value, an instance of class EntityFieldSignature describing this field. So we

know the following expressions are true.

Entity::F(Restaurant::_DISTANCE)->entity == Restaurant::class;

Entity::F(Restaurant::_DISTANCE)->name == 'distance';

Entity::F(Restaurant::_DISTANCE)->type == DatabaseVirtualField (...);

Entity::F(Restaurant::_DISTANCE)->default == null;

// The parameters of a field is null by default.

Entity::F(Restaurant::_DISTANCE)->p() == null;

// We can modify the parameters of a field by calling the method `p` on its signature.

Entity::F(Restaurant::_DISTANCE)->p(['here' => (object)['lat' => 42, 'long' => 59]]); // https://en.wikipedia.org/wiki/Khwarazm

// Now it is set.

Entity::F(Restaurant::_DISTANCE)->p() == ['here' => (object)['lat' => 42, 'long' => 59]];

Conditional Field Class

 The ConditionField class is similar to the regular field class but has some features used in defining

conditions and orders, which we discuss later. The Condition Field of each field is accessible as the

static method Entity::C({fieldName}) of the entity class. This class has the following structure.

public function __construct(public EntityFieldSignature $signature);

public function rel(ConditionField $conditionField): static;

public function name() : string;

public function joins(): array;

So the Entity::C({fieldName}) is actually new ConditionField(Entity::F({fieldName})) , an instance of

ConditionField based on the field signature.

The critical feature of this class is the rel method, which makes it possible to access fields on the

related tables. We cover this in the Condition and Order sections.

The methods name and joins are not usually helpful for the Xua programmer and are used in the

Xua core. So we do not cover them here.

Condition

 Condition is a Xua built-in class that we use to create WHERE expressions with.

Theoretically speaking, a condition node is a deciding machine that inputs a row of a specific table

and returns a boolean that indicates whether the given row is accepted in the condition or not.

Each instance of Condition is a node in a semi-binary tree. There are two ways two create an

instance of this class. One is to create a new node (a leaf), and the other is to operate on existing

nodes.

Leaf Condition

 There are three common types of leaf conditions: relational leaf, true leaf, and false leaf. However,

one can create a custom leaf as a raw leaf.

 The method for creating a relational leaf is the following.

Condition::leaf(ConditionField $field, string $relation, mixed $value = null);

This method will create a condition asserting that the field $filedName must be in $relation relation

with the value $value .

Field

 As described above, for each entity, conditional fields are available as instances of ConditionField

using the static methods of the form Entity::C({fieldName}) .

Relation

 XUA also provides relation constants as class constants of the Condition class. These constants are

listed below.

Name

SQL

equivalent Description

Condition::GRATER > Greater than

Condition::NGRATER <= Negation of GRATER

Condition::GRATEREQ >= Greater than or equal

Condition::NGRATEREQ < Negation of GRATEREQ

Relational Leaf

Name

SQL

equivalent Description

Condition::LESS < Less than

Condition::NLESS >= Negation of LESS

Condition::LESSEQ <= Less than or equal

Condition::NLESSEQ > Negation of LESSEQ

Condition::EQ = Equal

Condition::NEQ != Negation of EQ

Condition::NULLSAFEEQ <=> NULL-safe equal

Condition::NNULLSAFEEQ !(... <=> ...) Negation of NNULLSAFEEQ

Condition::BETWEEN BETWEEN ... AND

...

Whether a value is within a range of values (This

relation requires the argument $value to be an

array consisting of two values)

Condition::NBETWEEN NOT BETWEEN ...

AND ...

Negation of BETWEEN

Condition::IN IN Whether a value is within a set of values (This

relation requires the argument $value to be an

array of values)

Condition::NIN NOT IN Negation of IN

Condition::IS IS Test a value against a boolean

Condition::NIS IS NOT Negation of IS

Condition::ISNULL IS NULL NULL value test (This relation does not depend on

value of argument $value)

Condition::NISNULL IS NOT NULL Negation of ISNULL (This relation does not depend

on value of argument $value)

Condition::LIKE LIKE Simple pattern matching

Name

SQL

equivalent Description

Condition::NOT_LIKE NOT LIKE Negation of LIKE

Condition::REGEXP REGEXP Simple regular expression pattern matching

Condition::NOT_REGEXP NOT REGEXP Negation of REGEXP

Value

 The value argument must usually fit in the field type. However, in some cases (some relations),

one value does not suffice (e. g. Condition::BETWEEN), so we need to provide two values of the field

type as an array.

Condition on Related Entities

 To create a condition node that presents a condition on one of the related entities, one can use the

rel method on condition field instances.

Example

 For example, a condition node that asserts that a person is born in the '90s would look like the

following.

Condition::leaf(

 Entity::C(User::_BIRTH_DATE),

 Condition::BETWEEN,

 [

 DateTimeInstance::fromGregorianYmd('1990-1-1'),

 DateTimeInstance::fromGregorianYmd('2000-1-1')

]

)

As an other example, assume we want to have a condition that refers to all posts written by people

living in Palo Alto. We may use the following node.

Condition::leaf(

 Entity::C(Post::AUTHOR)

 ->rel(Entity::C(User::_LIVING_IN))

 ->rel(Entity::C(AdministrativeDivision::_TITLE)),

 Condition::EQ,

 'Palo Alto'

)

 The special leaf methods Condition::trueLeaf() and Condition::falseLeaf() are always true and false

respectively.

 The raw leaf method is described as follows.

Condition::rawLeaf(string $template, array $parameters = [], array $joins = [])

This method is used to inject pure and raw SQL script to the WHERE expression in case other leaf

methods do not satisfy the programmer's needs. The use of this method is highly discouraged as

the other methods are powerful enough to satisfy almost all of the programmer's needs. Still, a

somehow funny usage of this method would be the following.

Condition::rawLeaf("RAND() > ?", [0.5])

We will discuss parameter binding used in the above code in more detail later.

Operations on Conditions

 In addition to the above methods for creating new leaf nodes, Xua provides some methods to

create new nodes using existing nodes.

 four logical operators are used to create a new node using existing nodes. These operators are

binary-operators AND, OR, XOR, and unary-operator NOT.

 The primitive way to create a new node is to provide operands to an operator and receive a new

node as the return value. The four methods for this are the followings.

public static function _and_(Condition $leftCondition, Condition $rightCondition): Condition;

public static function _or_(Condition $leftCondition, Condition $rightCondition): Condition;

public static function _xor_(Condition $leftCondition, Condition $rightCondition): Condition;

public static function _not_(Condition $condition): Condition;

 Although the described methods can theoretically create any condition, Xua provides some

methods to improve code readability.

C Operators

 The first group is called the C (Condition) group. These methods are used on a node to connect it

to another node.

True Leaf & False Leaf

Raw Leaf

Logical Operators

Classic Operators

High-Level Operators

public function andC(Condition $condition): Condition;

public function orC(Condition $condition): Condition

public function xorC(Condition $condition): Condition;

public function not(): Condition;

For example, take a look at the following code.

$l = Condition::trueLeaf();

// $l is now rendered as 'TRUE'

$l->andC(Condition::falseLeaf());

// $l is now rendered as '(TRUE) AND (FALSE)'

$l->not();

// $l is now rendered as 'NOT ((TRUE) AND (FALSE))'

Common Operators

 These methods are used on a node to connect it to a relational node, but the creation of the

second node is embedded.

public function and(ConditionField $field, string $relation, mixed $value = null): Condition

{

 return $this->andC(Condition::leaf($field, $relation, $value));

}

public function or(ConditionField $field, string $relation, mixed $value = null): Condition

{

 return $this->orC(Condition::leaf($field, $relation, $value));

}

public function xor(ConditionField $field, string $relation, mixed $value = null): Condition

{

 return $this->xorC(Condition::leaf($field, $relation, $value));

}

R Operators

 This group is called the R (Raw) group. These methods are used on a node to connect it to a raw

node, but the creation of the second node is embedded.

public function andR(string $template, array $parameters = [], array $joins = []): Condition

{

 return $this->andC(Condition::rawLeaf($template, $parameters, $joins));

}

public function orR(string $template, array $parameters = [], array $joins = []): Condition

{

 return $this->orC(Condition::rawLeaf($template, $parameters, $joins));

}

public function xorR(string $template, array $parameters = [], array $joins = []): Condition

{

 return $this->xorC(Condition::rawLeaf($template, $parameters, $joins));

}

Order

 Order is a Xua built-in class that is usually used to create ORDER BY expressions.

To create an instance of this class, one needs to start with an empty instance and append order

expressions. Each new order appended has a lesser priority than the last one. The bootstrap

instance is created using the following method.

Order::noOrder(): Order;

To append a raw order expression in SQL syntax, one may use the following method, but it is highly

discouraged.

public function addRaw(string $order): Order;

To append an order based on an entity field, one may use the following method, which is preferred.

public function add(ConditionField $field, string $direction): Order

{

 return $this->addRaw($field->name() . ' ' . $direction);

}

Note that the direction can be one of the values Order::ASC and Order::DESC .

There are some other come in handy methods to use in order to avoid using the addRaw method,

such as the following.

public function addRandom(): Order

{

 return $this->addRaw('RAND()');

}

Pager

 Pager is a Xua built-in class that is usually used to generate LIMIT ... OFFSET ... expressions.

Each class instance contains these arguments (limit and offset) as properties, but it is a good

practice not to modify them manually. The class constructor takes two arguments, $pageSize and

$pageIndex , and calculates the limit and offset values according to them. It is possible to modify

these arguments as well. There is also one specific instance accessible using Pager::unlimited() ,

which is used to fetch all rows. The following properties and methods are present in the pager

class.

Properties Description

private int $pageSize; Page Size

private int $pageNumber; Page Number

Methods Description

construct(int $pageSize,

int $pageNumber);

Creates a new instance with the given data.

next(); Goes to the next page.

previous(); Goes to the previous page.

getPageSize(); Returns page size.

setPageSize(int $pageSize); Sets page size.

getPageNumber(); Returns page number.

setPageNumber(int $pageNumber); Sets page number.

static pages(Condition $condition,

int $pageSize);

Returns the number of pages if we store rows of

$entityName under $condition in pages of size $pageSize .

Note. The pages start from one.

Practicalities

Deploy & Alters

 When a new Entity is created, or modified, these changes should be synced with the MySQL

server. There is a particular service called EntityAlterService , which is responsible for doing this.

The static method alters(): string on this class adds newly created entities as tables to the

database by itself and returns ALTER queries for modified entities. This method does not run the

alters by itself, instead, it prints out the alters; which are possible to run by the programmer or

another person in charge.

The convention is to use this method in the deploy procedure, check for the alters, and generate a

warning if the database structure is not synced with the program. It is also a convention to give

developers the ability to complete the deploy process with the undone alters. This process is called

force deploy, and the alters which are possible to ignore while deploying are called force-friendly

alters.

Usage

 It is possible to use a defined entity in both server project (PHP language) and front-end native

codes via the Marshal Library, but not in the Xua source codes. The usage in the Marshal Library is

controlled via the visibility of entity methods and the modification of URPI, and it is not that

different from the PHP usage.

In this section, we try to cover all methods, properties, and constants available on an Entity class.

Properties & Constants

 Xua generates a class property and a class constant for each field defined in an entity. The

property is defined on each instance and refers to the corresponding value in the database, while

the constant (named {FIELDNAMEINSCREAMINGSNAKECASE}) contains the field

name. For example for field birthDate on User , Xua generate $user->birthDate and User::BIRTH</

em>DATE = 'User.birthDate' . This constant can be used to get Field and Conditional Field instances

using Entity::F(User::BIRTHDATE) and Entity::C(User::BIRTHDATE) respectively.

Helpers

 @TODO

Execute

 @TODO

Field Signatures

 @TODO

Indexes

 @TODO

Fields

 @TODO

Table

 @TODO

VARQUE Actions

 In order to discuss other entity methods, we need to discuss the VARQUE actions first.

There are different actions that one can take on a database. We divide these functionalities into

three categories: Select Data Actions, Create/Modify Data Actions, and Delete Data Actions. We

may also divide the functions based on whether they act on a single row or a group of rows, which

takes us to two categories Singular Actions and Conditional Actions. This gives us six types of

actions, which we name each one as follows.

Retrieve Create/Modify Delete

Singular View Adjust Remove

Conditional Query Update Eliminate

These actions are called the VARQUE (View, Adjust, Remove, Query, Update, Eliminate) actions.

View

 Two methods are used to retrieve a single row of a table. The first one has the following signature.

static function getOne(

 ?Condition $condition = null,

 ?Order $order = null,

 string $caller = Visibility::CALLER_PHP

): static;

This function takes an instance of the Condition class and an instance of the Order class (both are

described before) and returns the first row (ordered by $order) that matches the $condition criteria.

If no such row is found, it returns an empty instance of the entity. To check if an instance of an

entity class is empty, one can check if the id property is null or not ($entity->id === null or not).

The second one is the class constructor.

function __construct(?int $id = null);

This function is just an alias for the following call, designed for simplicity.

EntityName::getOne(

 Condition::leaf(

 Entity::C(EntityName::_ID),

 Condition::EQ,

 $id

)

);

Query

 @TODO getMany and count

Adjust

 @TODO store

Update

 @TODO storeMany and EntityBuffer

Remove

 @TODO delete

Eliminate

 @TODO deleteMany

This page has been generated by xua

http://xuarizmi.ir/

METHODS;

T INY BLOCKS OF COMPUTATION

Introduction

 @TODO

This page has been generated by xua

http://xuarizmi.ir/

VARQUE METHODS;

@TODO

Introduction

 @TODO

This page has been generated by xua

http://xuarizmi.ir/

SERVICES;

@TODO

Introduction

 @TODO

This page has been generated by xua

http://xuarizmi.ir/

PREDEFINED SERVICES;

@TODO

Introduction

 @TODO

Back: RouteService

Back: Exception Service

Front: Http Connection Service

This page has been generated by xua

http://xuarizmi.ir/

DOCUMENTATIONS;

@TODO

Introduction

 @TODO

any base folder is part, all files inside are chapters (pages), and inside files there are sections(h1),

subsections(h2), subsubsections(h3), etc.

This page has been generated by xua

http://xuarizmi.ir/

CONGRATULATIONS;

F IN IS CORONAT OPUS

It's Over, It's Done

Nice to finally meet you here. Congratulations. We are thrilled that you took the time to read this e-

book about the Xua Language and wish you to use this tool to build some great back-end

applications.

Please keep in touch with the development team using kmirzavaziri@gmail.com and let us know

your opinions and comments.

We also appreciate it if you want to contribute to this project since this is an open-source project

and cannot grow without your contributions.

This page has been generated by xua

mailto:kmirzavaziri@gmail.com
http://xuarizmi.ir/

	Xua A PHP CODE GENERATOR
	Table Of Contents
	Preface; AN INTRODUCTION TO XUA
	Introduction
	Architecture
	Practicalities
	System Requirements
	Getting Started
	Installation
	Hello World!

	Units; THE FUNDAMENTALS
	Introduction
	Xua Server
	Xua Server Directly Defined Units
	Universal Resources Pool
	Methods
	Entities
	Super Types
	A Little Formalism on Super Types

	Server Service Classes

	Resource Files
	Public Resource Files
	Private Resource Files

	Interfaces

	Xua Server Generated Units
	Universal Resources Pool Interface (URPI)
	Route Detection Unit
	Xua Exception Handler

	Marshal Library
	Virtual Resource Pool
	Entity Interfaces
	Method Interfaces

	Local Service Classes
	Marshal Library Generated Units
	Marshal/Unmarshal Unit
	Http Connection Unit

	Documentations
	Service Classes Documentations
	Super Types Documentations
	Entities Documentations
	Entities Graph
	Methods Documentations
	Book

	Foreign Units
	System Resources
	Libraries
	3rd Party Apps
	Database and Cache Servers
	Web Browser
	Native Client Codes

	Interfaces & Routes; THE PROJECT'S FRONTLINE
	Introduction
	Definition
	Structure
	Hierarchy

	Xua's Route Minimal Language
	Literal Routing & The Routes Tree
	All Methods At Once
	Variables & Priorities

	Supers; A WHOLE LEVEL BEYOND TYPES
	Introduction
	Effects on the projects
	Terminology

	Definition
	Structure
	Arguments
	Validation
	Predicate
	Marshal & Unmarshal
	Native Type
	Hierarchy
	Visibility

	Usage
	Inside PHP
	Make a type
	Determine a type
	Accepts, Implicit & Explicit
	explicitlyAccepts
	implicitlyAaccepts
	accepts

	Marshal & Unmarshal
	Network transmissions
	Database Storing & Restoring

	Native Type

	Inside Xua

	Examples
	Range
	Definition
	Extension
	Arguments
	Validation
	Predicate
	Marshal and Unmarshal
	Native Type
	Further Hierarchy
	Validation
	Constant Arguments
	Marshaling
	New Arguments

	Usage
	Inside PHP
	Inside Xua

	Good News

	Predefined Supers; @TODO
	Introduction

	Entities; THE BEATING HEART
	Introduction
	Effects on the projects
	Terminology
	Server Project Side
	MySQL Side
	Correspondence

	Definition
	Structure
	Fields
	Indexes
	Validation
	Overriding Methods
	Hierarchy
	Visibility

	Special Field Types
	Virtual Field Supers
	PHP Virtual Field
	PHP Virtual Field Example

	Database Virtual Field
	Database Virtual Field Example

	Entity Relation
	A Little Formalism on Relation Classes
	The Signature
	Related Entity
	Relation Class
	Name & Inverse Name
	Constant Arguments
	Definition Side Arguments

	Entity Relation Example

	Helper Classes
	Field Class
	Field Class Example

	Conditional Field Class
	Condition
	Leaf Condition
	Relational Leaf
	Field
	Relation
	Value
	Condition on Related Entities
	Example

	True Leaf & False Leaf
	Raw Leaf

	Operations on Conditions
	Logical Operators
	Classic Operators
	High-Level Operators
	C Operators
	Common Operators
	R Operators

	Order
	Pager

	Practicalities
	Deploy & Alters

	Usage
	Properties & Constants
	Helpers
	Execute
	Field Signatures
	Indexes
	Fields
	Table

	VARQUE Actions
	View
	Query
	Adjust
	Update
	Remove
	Eliminate

	Methods; TINY BLOCKS OF COMPUTATION
	Introduction

	VARQUE Methods; @TODO
	Introduction

	Services; @TODO
	Introduction

	Predefined Services; @TODO
	Introduction

	Documentations; @TODO
	Introduction

	Congratulations; FINIS CORONAT OPUS
	It's Over, It's Done

